Rede Brasileira de Pesquisa em Tuberculose - REDE TB

  • Afranio Kritski Programa Académico de Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil.
  • Antonio Ruffino-Nettoq Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
  • Anete Trajman Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro; Programa de Pós-graduação em Clínica Médica, Universidade Federal do Rio de Janeiro; Global Health Department, McGill University, Montreal, Canadá
  • Tereza Cristina Scatena Villa Escola de Enfermagem de Ribeirão Preto, Universidade São Paulo, Ribeirão Preto, São Paulo, Brasil
  • José Roberto Lapa e Silva Departamento de Clínica Médica - Faculdade de Medicina / Universidade Federal do Rio de Janeiro (UFRJ).
  • David J. Hadad Departamento de Clínica Médica/Centro de Ciências da Saúde e Núcleo de Doenças Infecciosas/Universidade Federal do Espirito Santo (UFES).
  • Ethel Leonor Maciel Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Espirito Santo, Vitória, Espirito Santo
  • Eduardo Netto Instituto Brasileiro de Investigação em Tuberculose - Fundação Jose Siveira - Bahia
  • Clemax Sant'Anna Instituto de Puericultura e Pediatria Martagão Gesteira e Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro.
  • Betina Mendez Alcantara Gabardo Programa Estadual de Controle de Tuberculose- Secretaria Estadual de Saúde do Estado do Paraná.
  • Andrea Maciel de Oliveira Rossoniq Hospital de Clinicas - universidade Federal do Paraná. Faculdade de Medicina - Universidade Estadual de Ponta Grossa Paraná.
  • Paulo Cesar Basta Escola Nacional de Saúde Pública- Fiocruz, Manguinhos, Rio de Janeiro, Brasil
  • Monica Kramer de Noronha Andrade Escola Nacional de Saúde Pública- Fiocruz, Manguinhos, Rio de Janeiro, Brasil
  • Celio Lopes Silva Centro de Pesquisa em Tuberculose - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
  • Diogenes Santos Centro de Pesquisas em Biologia Molecular e Funcional/Pontífice Universidade Católica do Rio Grande do Sul
  • Martha Maria de Oliveira Centro de Desenvolvimento de Tecnologia em Saúde - Fiocruz, Rio de Janeiro, Rio de Janeiro, Brasil
  • Pedro Eduardo Almeida Silva Universidade Federal do Rio Grande - Rio Grande do Sul
Palavras-chave: Pesquisa e desenvolvimento, organizações não-governamentais, tuberculose, micobacterioses

Resumo

Apesar do significativo progresso da pesquisa científica relacionada à tuberculose (TB) e outras micobacterioses existentes no Brasil, no início do milénio, o país ainda experimentava uma frágil cooperação entre os diversos atores dessa área: indústria, universidades, institutos de pesquisa, sociedade civil, e serviços de saúde, incluindo o Programa Nacional de Controle da TB (PNCT). Em 2001, a REDE-TB foi criada como um grupo multidisciplinar de pesquisadores e estudantes brasileiros, tendo como parceiros a sociedade civil e representantes dos serviços de saúde que trabalhavam com TB e HIV/Aids em todo o país. A REDE-TB ajudou a construir as pontes necessárias entre estes diferentes atores para promover a pesquisa e atividades educativas de forma integrada. Recentemente, a REDE-TB elaborou o Plano Nacional de Pesquisa em TB. Identificaram-se lacunas e prioridades para as plataformas de pesquisa e inovação focadas nas demandas nacionais. Estas plataformas terão como base a integração da pesquisa básica/clínica/translacional com o parque industrial com vistas a agilizar a disponibilização de novas tecnologias e novas estratégias de gestão para o sistema de saúde. Estas tecnologias serão avaliadas em pesquisas operacionais no âmbito do sistema de saúde vigente no país para analisar seu impacto do ponto de vista individual e coletivo.

Downloads

Não há dados estatísticos.

Referências

1. Ministério da Saúde. Secretaria de Vigilância em Saúde. Programa Nacional de
Controle da Tuberculose. Manual de Recomendações para o Controle da Tuberculose
[Internet]. Brasília: Ministério da Saúde; 2010 [cited 2012 Dec 17]. 186 p.
Available from: http://portal.saude.gov.br/portal/arquivos/pdf/manual_de_recomendacoes_
controle_tb_novo.pdf
2. Mann G, Squire SB, Bissell K, Eliseev P, Du Toit E, Hesseling A, et al. Beyond
accuracy: creating a comprehensive evidence base for TB diagnostic tools. Int J Tuberc
Lung Dis Off J Int Union Tuberc Lung Dis. 2010 Dec;14(12):1518–24.
3. Squire SB, Ramsay ARC, van den Hof S, Millington KA, Langley I, Bello G,
et al. Making innovations accessible to the poor through implementation research
[State of the art series. Operational research. Number 7 in the series]. Int J Tuberc
Lung Dis. 2011 Jul 1;15(7):862–70.
4. Kritski A, Fujiwara PI, Vieira MA, Netto AR, Oliveira MM, Huf G, et al. Assessing
new strategies for TB diagnosis in low- and middle-income countries. Braz J
Infect Dis. 2013 Mar;17(2):211–7.
5. Kritski A, Barreira D, Junqueira-Kipnis, AP, Moraes MO, Campos MM, Degrave
WM, Miranda SS, Krieger MA, Chimara E, Morel C, Dalcolmo MP, Maciel ELN,
Evangelista MSN, Villa TS, Sanchez M, Costa FD, Queiroz I , Oliveira MM, Junior
RS, Lapa e Silva JR, Ruffino-Netto A. Brazilian Response to “Global End TB Strategy”:
National Tuberculosis Research. Rev Bras Med Trop. 2016;49(1):135–45.
6. de Paula L, Silva CL, Carlos D, Matias-Peres C, Sorgi CA, Soares EG, et al. Comparison
of different delivery systems of DNA vaccination for the induction of protection
against tuberculosis in mice and guinea pigs. Genet Vaccines Ther. 2007;5:2.
7. dos Santos SA, Zárate-Bladés CR, de Sá Galetti FC, Brandão IT, Masson AP,
Soares EG, et al. A subunit vaccine based on biodegradable microspheres carrying
rHsp65 protein and KLK protects BALB/c mice against tuberculosis infection.
Hum Vaccin. 2010 Dec;6(12):1047–53.
8. Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FRT, Rodrigues V, Ramos SG,
et al. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in
mice harboring tuberculosis. PLoS Negl Trop Dis. 2010;4(6):e700.
9. Pelizon AC, Martins DR, Zorzella-Pezavento SFG, Seger J, Justulin LA, da Fonseca
DM, et al. Neonatal BCG immunization followed by DNAhsp65 boosters:
highly immunogenic but not protective against tuberculosis - a paradoxical effect of
the vector? Scand J Immunol. 2010 Feb;71(2):63–9.
10. Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG. Effectiveness,
against tuberculosis, of pseudo-ternary complexes: peptide-DNA-cationic liposome.
J Colloid Interface Sci. 2012 May 1;373(1):102–9.
11. Souza PRM, Zárate-Bladés CR, Hori JI, Ramos SG, Lima DS, Schneider
T, et al. Protective efficacy of different strategies employing Mycobacterium leprae
heat-shock protein 65 against tuberculosis. Expert Opin Biol Ther. 2008
Sep;8(9):1255–64.
12. Zárate-Bladés CR, Bonato VLD, da Silveira ELV, Oliveira e Paula M, Junta CM,
Sandrin-Garcia P, et al. Comprehensive gene expression profiling in lungs of mice
infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy. J
Gene Med. 2009 Jan;11(1):66–78.
13. Zorzella-Pezavento SFG, Guerino CPF, Chiuso-Minicucci F, França TGD, Ishikawa
LLW, Masson AP, et al. BCG and BCG/DNAhsp65 vaccinations promote
protective effects without deleterious consequences for experimental autoimmune
encephalomyelitis. Clin Dev Immunol. 2013;2013:721383.
14. Malaghini M, Thomaz-Soccol V, Probst CM, Krieger MA, Preti H, Kritski A, et
al. Recombinant antigen production for assays of intradermoreaction for diagnosis
and surveillance of tuberculosis. J Biotechnol. 2011 Oct;156(1):56–8.
15. Moreira A da SR, Huf G, Vieira MAM da S, Costa PA da, Aguiar F, Marsico AG,
et al. Liquid vs Solid Culture Medium to Evaluate Proportion and Time to Change
in Management of Suspects of Tuberculosis—A Pragmatic Randomized Trial in Secondary
and Tertiary Health Care Units in Brazil. Doherty TM, editor. PLOS ONE.
2015 Jun 5;10(6):e0127588.
16. Langley I, Squire SB, Dacombe R, Madan J, e Silva JRL, Barreira D, et al. Developments
in Impact Assessment of New Diagnostic Algorithms for Tuberculosis
Control. Clin Infect Dis. 2015 Oct 15;61(suppl 3):S126–34.
17. Pinto M, Trajman A, Steffen R, Entringer AP, Pinto M, Trajman A, et al. Cost analysis
of nucleic acid amplification for diagnosing pulmonary tuberculosis, within the context
of the Brazilian Unified Health Care System. J Bras Pneumol. 2015 Dec;41(6):536–8.
18. Durovni B, Saraceni V, van den Hof S, Trajman A, Cordeiro-Santos M, Cavalcante
S, et al. Correction: Impact of Replacing Smear Microscopy with Xpert MTB/
RIF for Diagnosing Tuberculosis in Brazil: A Stepped-Wedge Cluster-Randomized
Trial. PLoS Med. 2015 Dec;12(12):e1001928.
19. Trajman A, Durovni B, Saraceni V, Menezes A, Cordeiro-Santos M, Cobelens F,
et al. Impact on Patients’ Treatment Outcomes of XpertMTB/RIF Implementation
for the Diagnosis of Tuberculosis: Follow-Up of a Stepped-Wedge Randomized Clinical
Trial. PloS One. 2015;10(4):e0123252.
20. de Camargo KR, Guedes CR, Caetano R, Menezes A, Trajman A. The adoption
of a new diagnostic technology for tuberculosis in two Brazilian cities from the
perspective of patients and healthcare workers: a qualitative study. BMC Health
Serv Res. 2015;15:275.
21. Trajman A, Durovni B, Saraceni V, Cordeiro-Santos M, Cobelens F, van den Hof
S. High positive predictive value of Xpert in a low rifampicin resistance prevalence
setting. Eur Respir J. 2014 Dec;44(6):1711–3.
22. Durovni B, Saraceni V, Cordeiro-Santos M, Cavalcante S, Soares E, Lourenço
C, et al. Operational lessons drawn from pilot implementation of Xpert MTB/Rif
in Brazil. Bull World Health Organ. 2014 Aug 1;92(8):613–7.
23. da Silva Antunes R, Pinto M, Trajman A. Patient costs for the diagnosis of tuberculosis
in Brazil: comparison of Xpert MTB/RIF and smear microscopy. Int J
Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2014 May;18(5):547–51.
24. Conde MB, Efron A, Loredo C, De Souza GRM, Graça NP, Cezar MC, et al. Moxifloxacin
versus ethambutol in the initial treatment of tuberculosis: a double-blind,
randomised, controlled phase II trial. The Lancet. 2009 Apr;373(9670):1183–9.
25. Sterling TR, Scott NA, Miro JM, Calvet G, La Rosa A, Infante R, et al. Three
months of weekly rifapentine plus isoniazid for treatment of M. tuberculosis infection
in HIV co-infected persons. AIDS Lond Engl. 2016 Mar 17;
26. Menzies D, Long R, Trajman A, Dion M-J, Yang J, Al Jahdali H, et al. Adverse
events with 4 months of rifampin therapy or 9 months of isoniazid therapy
for latent tuberculosis infection: a randomized trial. Ann Intern Med. 2008 Nov
18;149(10):689–97.
27. Aspler A, Long R, Trajman A, Dion M-J, Khan K, Schwartzman K, et al. Impact
of treatment completion, intolerance and adverse events on health system costs in a
randomised trial of 4 months rifampin or 9 months isoniazid for latent TB. Thorax.
2010 Jul;65(7):582–7.
28. Scatena LM, Wysocki AD, Beraldo AA, Magnabosco GT, Brunello MEF, Ruffino-
Netto A, et al. Validity and reliability of a health care service evaluation instrument
for tuberculosis. Rev Saúde Pública. 2015;49:7.
29. Andrade RLP, Scatolin BE, Wysocki AD, Beraldo AA, Monroe AA, Scatena LM,
et al. [Tuberculosis diagnosis: primary health care or emergency medical services?].
Rev Saúde Pública. 2013 Dec;47(6):1149–57; discussion 1158.
30. Arakawa T, Magnabosco GT, Lopes LM, Arnaez MAA, Gavín MAO, Gallardo
MDPS, et al. Evaluation of the performance of Tuberculosis Control Programs in
Brazil and Spain: an integrative review of the literature. Cienc Saude Coletiva. 2015
Dec;20(12):3877–89.
31. Villa TCS, Ruffino-Netto A. Performance assessment questionnaire regarding
TB control for use in primary health care clinics in Brazil. J Bras Pneumol Publicação
Of Soc Bras Pneumol E Tisilogia. 2009 Jun;35(6):610–2.
32. Villa TC, Ruffino-Netto A, Scatena LM, Andrade RLP, Brunello MEF, Nogueira
JA, et al. Health services performance for TB treatment in Brazil: a cross-sectional
study. BMC Health Serv Res. 2011;11(1):241.
33. Reis-Santos B, Gomes T, Locatelli R, de Oliveira ER, Sanchez MN, Horta BL,
et al. Treatment Outcomes in Tuberculosis Patients with Diabetes: A Polytomous
Analysis Using Brazilian Surveillance System. Fernandez-Reyes D, editor. PLoS
ONE. 2014 Jul 8;9(7):e100082.
34. do Prado T, Miranda A, de Souza F, dos Santos Dias E, Sousa LK, Arakaki-Sanchez
D, et al. Factors associated with tuberculosis by HIV status in the Brazilian national
surveillance system: a cross sectional study. BMC Infect Dis. 2014;14(1):415.
35. Marlow MA, Maciel ELN, Sales CMM, Gomes T, Snyder RE, Daumas RP,
et al. Tuberculosis DALY-Gap: Spatial and Quantitative Comparison of Disease
Burden Across Urban Slum and Non-slum Census Tracts. J Urban Health. 2015
Aug;92(4):622–34.
36. Reis-Santos B, Pellacani-Posses I, Macedo LR, Golub JE, Riley LW, Maciel EL.
Directly observed therapy of tuberculosis in Brazil: associated determinants and
impact on treatment outcome. Int J Tuberc Lung Dis. 2015 Oct 1;19(10):1188–93.
37. dos Santos Dias E, do Prado TN, da Silva Guimarães AL, Ramos MC, Sales
CMM, de Fátima Almeida Lima E, et al. Childhood tuberculosis and human immunodeficiency
virus status in Brazil: a hierarchical analysis. Int J Tuberc Lung Dis.
2015 Nov 1;19(11):1305–11.
38. Maciel EL, Reis-Santos B. Determinants of tuberculosis in Brazil: from conceptual
framework to practical application. Rev Panam Salud Pública Pan Am J Public
Health. 2015 Jul;38(1):28–34.
39. Torrens AW, Rasella D, Boccia D, Maciel ELN, Nery JS, Olson ZD, et al. Effectiveness
of a conditional cash transfer programme on TB cure rate: a retrospective
cohort study in Brazil. Trans R Soc Trop Med Hyg. 2016 Mar;110(3):199–206.
40. Strabelli TMV, Siciliano RF, Castelli JB, Demarchi LMMF, Leão SC, Viana-Niero
C, et al. Mycobacterium chelonae valve endocarditis resulting from contaminated
biological prostheses. J Infect. 2010 Jun;60(6):467–73.
41. Matsumoto CK, Chimara E, Ramos JP, Campos CED, Caldas PC de S, Lima
KVB, et al. Rapid tests for the detection of the Mycobacterium abscessus subsp.
bolletii strain responsible for an epidemic of surgical-site infections in Brazil. Mem
Inst Oswaldo Cruz. 2012 Dec;107(8):969–77.
42. Rabello MC da S, Matsumoto CK, de Almeida LGP, Menendez MC, de Oliveira
RS, Silva RM, et al. First Description of Natural and Experimental Conjugation
between Mycobacteria Mediated by a Linear Plasmid. Johnson EA, editor. PLoS
ONE. 2012 Jan 3;7(1):e29884.
43. Leão SC, Viana-Niero C, Matsumoto CK, Lima KVB, Lopes ML, Palaci M, et
al. Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria
in Brazil. Future Microbiol. 2010 Jun;5(6):971–80.
Publicado
2018-08-27
Como Citar
1.
Kritski A, Ruffino-Nettoq A, Trajman A, Scatena Villa TC, Lapa e Silva JR, Hadad DJ, Maciel EL, Netto E, Sant’Anna C, Mendez Alcantara Gabardo B, de Oliveira Rossoniq AM, Basta PC, Kramer de Noronha Andrade M, Lopes Silva C, Santos D, de Oliveira MM, Almeida Silva PE. Rede Brasileira de Pesquisa em Tuberculose - REDE TB. ihmt [Internet]. 27Ago.2018 [citado 5Nov.2024];15:35-4. Available from: https://anaisihmt.com/index.php/ihmt/article/view/103