COVID-19’s epidemiological and demographic analysis in Africa

  • Helder F. B. Martins Médico especialista; Professor Emérito de Saúde Pública. Doutor Honoris Causa em Ciências da Saúde e da Educação, ex-Ministro da Saúde da República Popular de Moçambique (1975-80), ex-funcionário sénior da OMS (1985-96), ex-membro de vários comités de peritos da OMS
  • Rogers Hansine Doutor em Geografia Humana, docente e investigador assistente no Departamento de Geografia, Faculdade de Letras e Ciências Sociais, Universidade Eduardo Mondlane, Moçambique

Abstract

Africa has 17% of the world population, but at the close of this analysis (12 October 2020), it had only 4.2% of cases and 3.5% of COVID-19 deaths in the world. Therefore, we can state that it is a continent that is little affected by COVID-19. All African countries fall within between latitude 37º 21' and 34° 50' S and about 80% of African territory is in the intertropical zone, having ultraviolet radiation throughout the year, which is an important source of vitamin D production by African populations. A demographic and epidemiological analysis is made of the 15 most populous countries in Africa, all of them with more than 25 million inhabitants. It has been found that, except for countries in North Africa and South Africa, the median age is around 20 years and about 40% of the population is under 15 years old. The percentage of the population aged 65 and over is small and, in many countries, is less than 5% of the population. These demographic characteristics can be shown to be favourable in relation to the COVID-19 pandemic. Population densities vary widely from Uganda's 222 inhabitants/km2 to Angola's 26 inhabitants/km2. The same is true of the percentage of urban population, which ranges from 21% in Ethiopia to 73% in Algeria. However, in Africa there are some of the megacities in the world, with high population densities, which theoretically enhances the transmissibility of the virus. An epidemiological analysis is made of the evolution of the number of cases, number of recovered cases, number of deaths and number of tests performed, per million inhabitants, in each of the 15 selected countries, and we illustrate the evolution with bar graphs of the daily records of cases and deaths and with curves of the respective averages of the last 7 days. It was found that, except for Angola and Morocco, the other countries analysed have already reached their peak and are in the resolution phase. It was also found that, with the exception of South Africa, where there was a cumulative of 11,840 cases and 305 deaths2 per million inhabitants, in the remaining countries, the epidemic has been benign, with the average number of cases (1,656) and deaths (37,8) per million inhabitants in these 15 most populous countries in Africa, respectively 3,2 times and 3,8 times less than the respective world averages. Only Egypt (5.8%), Angola and Algeria (both with 3.4%) have a case fatality rate above the world average. All other countries have case fatality rates below the world average, some of them among the lowest in the world. The authors analyse the various factors that may contribute to this benignity of the COVID-19 pandemic in Africa and noted that, until the period covered by our analysis the countries with the highest median age and with the highest percentage of population aged 65 and over are the countries most affected by the pandemic, but concluded that these statistical findings do not explain everything. The authors are aware of speculation that, in Africa, testing rates would be very low and that official statistics would therefore not be credible, but after a detailed analysis they concluded that it is clear that the benignity of the epidemic in Africa cannot be attributed to the fallacious argument of the "weak" testing index. The authors also analysed the population density and socioeconomic characteristics of African populations and concluded that these are conditions that, theoretically, would be highly favourable to the spread of COVID-19, which made the world fear an enormous health catastrophe in Africa. However, until the reference date of the data in this publication (12 October 2020), the numbers prove that it did not occur and therefore explanations need to be sought. We consider it neither credible nor sensible to admit that the benignity of the pandemic in Africa may be due to the circulation of less virulent strains of SARS-CoV-2 than those existing in circulation in the rest of the world. Nor do the authors attach great importance to the differences between various countries regarding the implementation of measures to prevent the epidemic, since statistical data show that countries that have not taken coercive measures are not more affected by the pandemic than those that have taken more stringent measures. In the African context, the existence of abundant ultraviolet radiation is especially important because it ensures the natural production of vitamin D, whose anti-inflammatory effects and consequently its protective effect, in relation to the lethality by COVID-19, are largely proven. Finally, the authors analyse in detail the immune status of African populations and consider that this is where the explanation for the benignity of the pandemic in Africa must be found.

Downloads

Download data is not yet available.

References

Wikipédia: Pandemia de COVID-19 na África. In: https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19_na_%C3%81frica#Nig%C3%A9ria. Acessado a 4/09/2020.

Walker, Patrick G. T.; Whittaker, Charles & al. (Imperial College COVID-19 Response Team): The Global Impact of COVID-19 and Strategies for Mitigation and Suppression. Imperial College, London, 26 de Março de 2020. Acessado a 5 de Abril de 2020. Mais tarde publicado em: Science 24 de Julho de 2020: Vol. 369, Issue 6502, pp. 413-422. In: https://doi:10.1126/science.abc0035.

LSHTM CMMID COVID19 Working Group: Modelling projections for COVID19 epidemic in Mozambique. LSHTM, Londres, 30 de Abril de 2020.

Mobs Laboratory, Northeastern University Boston, CIDID (Center for Inference and Dynamics of Infectious Diseases) & Fred Hutchinson Cancer Research

Center, Seattle: Modeling local transmission and the burden of the COVID-19 epidemic in African countries. Boston e Seattle, 12 de Abril de 2020.

Kissler, S. M.; Tedijanto, C.; Goldstein, E. et al.: Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science Vol. 368, Issue

, pp. 860-868, 22 de Maio de 2020. In: https://Doi:10.1126/science.abb5793. Acessado a 5/06/2020.

Frost, Isabel & al: COVID-19 in East Africa: National Projections of Total and Severe Infections Under Different Lockdown Scenarios. Washington, Center for

Disease Dynamics, Economics & Policy, 20 de Maio de 2020. In: https://cddep.org/wp-content/uploads/2020/07/East-Africa-1.pdf. Acessado a 30 de Julho de 2020.

Cabore, Joseph Waogodo & al.: The potential effects of widespread community transmission of SARS-CoV-2 infection in the WHO African Region: a predictive

model. Brazzaville, Organização Mundial da Saúde, Escritório Regional para a África, Maio de 2020. Publicado posteriormente no: BMJ Global Health 2020;5:e002647. In: http://dx.doi.org/10.1136/bmjgh-2020-002647. Acessado a 20/07/2020.

UOL: África - geografia física - Espaço natural, relevo, hidrografia, clima e vegetação. In: https://educacao.uol.com.br/disciplinas/geografia/africa---geografia-

fisica-espaco-natural-relevo-hidrografia-clima-e-vegetacao.htm?cmpid=-copiaecola. Acessado a 15/09/2020.

Maure, Genito, A.: Comunicação pessoal por e-mail. Maputo, 15/09/2020.

Wikipédia: Cabo Branco (Tunísia). In: https://pt.wikipedia.org/wiki/Cabo_Branco_(Tun%C3%ADsia). Acessado a 15/09/2020.

Guia Viagem – Edição Brasileira: Cabo das Agulhas: o ponto mais meridional do continente. In: https://www.guiaviagem.org/cabo-agulhas/. Acessado a 15/09/2020.

World Population Review: In: https://worldpopulationreview.com/countries/algeria-population. Acessado a 8/09/2020).

Rocklöv, J. E Sjödin, H.: High population densities catalyse the spread of COVID-19. Journal of Travel Medicine 2020;27. https://doi.org/10.1093/jtm/taaa038. Acessado a 5/09/2020.

Hopman, J.; Allegranzi, B. E Mehtar, S.: Managing COVID-19 in Low- and Middle-Income Countries. JAMA 2020;323: 1549-50. https://doi:10.001/jama.2020.4169. Acessado a 5/09/2020.

Kodera, S, Rashed, E. A. E Hirata, A.: Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature

and Absolute Humidity. International Journal of Environmental Research and Public Health 2020;17:5477. https://doi:10.3390/ijerph17155477. Acessado a 5/09/2020.

Roy, S.; Bhunia, G. S. E Shit, P. K.: Spatial prediction of COVID-19 epidemic using ARIMA techniques in India. Modeling Earth Systems and Environment, 16 de Junho de 2020. https://doi.org/10.1007/s40808-020-00890-y. Acessado a 5/09/2020.

Afshordi, N.; Holder, B.; Bahrami, M. E Lichtblau, D.: Diverse local epidemics reveal the distinct effects of population density, demographics, climate, depletion of susceptibles and intervention in the first wave of COVID-19 in the United States. Pré-publicação ainda sem revisão de pares. 1 de Julho de 2020. In: https://doi.org/10.1101/2020.06.30.20143636. Acessado a 5/09/2020.

Mulegwa, Pascal: RDC/Covid-19: le dépistage décentralisé dans la capitale et 5 provinces. AA 100 Years – Santé Afrique. 16/06/2020. In: https://www.aa.com.tr/fr/afrique/rdc-covid-19-le-d%C3%A9pistage-d%C3%A9centralis%C3%A9-dans-la-capitale-et-5-provinces-/1879179. Acessado a 7/09/2020.

Ministère De La Santé De L’algérie: Rapport de Situation sur l’Epidémie du Covid-19 en Algérie. Argel, 9 de Agosto de 2020. In: https://www.afro.who.int/sites/default/files/2020-08/Sitrep%20140_08082020.pdf. Acessado a 8/09/2020.

Wikipédia: Démographie en Algérie. In: https://fr.wikipedia.org/wiki/D%C3%A9mographie_en_Alg%C3%A9rie#R%C3%A9partition_de_la_population. Acessado a 8/09/2020.

Jornal “O País”: Marrocos fecha acesso à Cidade de Casablanca durante 14 dias. Maputo, 8 de Setembro de 2020.

Jornal de Angola: COVID em Angola. Luanda, 21 de Setembro de 2020.

Jornal “O País”: Luanda tem 92 por cento dos casos de COVID-19. Edição 1958. Luanda, 12 de Setembro de 2020.

Ministério Da Saúde Da República De Moçambique: Boletim Diário de Vigilância de COVID-19: Publicação #5. Maputo, 22/03/2020.

Ministério Da Saúde: Boletim Diário COVID-19, nº 209, Maputo, 12/10/2020.

Ministério Da Saúde Da República De Moçambique – Direcção Nacional De Saúde Pública: Comunicado de Imprensa – Actualização da Informação sobre a

COVID-19 no País e no Mundo. Maputo, 25 de Setembro de 2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública – Centro Operativo De Emergências De Saúde Pública: Boletim Mensal de Covid-19 Moçambique

“Mês de Setembro”. Maputo, 4 de Outubro de 2020

INE: IV Recenseamento Geral da População e Habitação de 2017: Projecções da População 2007-2040 – Moçambique. Maputo, Instituto Nacional de Estatística,

In: http://www.ine.gov.mz/estatisticas/estatisticas-demograficas-e-indicadores-sociais/projeccoes-da-populacao.

Samo Gudo, Eduardo: Inquérito Sero-epidemiológico de SARS-CoV-2 na Cidade de Nampula – Resultados Preliminares. Maputo, INS, 1/07/2020.

Arnaldo, Paulo: Inquérito Sero-epidemiológico de SARS-CoV-2 na Cidade de Pemba (InCOVID 2020) – Resultados Preliminares. Maputo, INS, 27/07/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 23 Período: (10 - 17 Agosto 2020). Maputo, 17/08/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 24 Período: (17 - 23 Agosto 2020). Maputo, 23/08/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 25 Período: (24 - 30 Agosto 2020). Maputo, 30/08/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 26 Período: (31 Agosto - 6 Setembro 2020). Maputo, 6/09/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 27 Período: (7 - 13 Setembro 2020). Maputo, 13/09/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 28 Período: (14 - 20 Setembro 2020). Maputo, 20/09/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 29 Período: (21 - 27 Setembro 2020). Maputo, 27/09/2020.

Ministério Da Saúde – Direcção Nacional De Saúde Pública: – Centro Operativo De Emergências De Saúde Pública/Coronavírus 2019: Relatório Situacional:

COVID-19, Nº 30 Período: (28 Setembro – 4 Outubro 2020). Maputo,

/10/2020.

Brufsky, Adam: Distinct Viral Clades of SARS-CoV-2: Implications for Modeling

of Viral Spread. Journal of Medical Virology, 20 de Abril de 20020. In:

https://doi.org/10.1002/jmv.25902. Acessado a 6 de Junho de 2020.

Hang-Ping, Yao et al.: Patient-Derived Mutations Impact Pathogenicity of

SARS-CoV-2. SSRN-Cell Press, Sneak Peak, 30 de Abril de 2020. In: https://

doi.org/10.2139/ssrn.3578153. Acessado a 6 de Junho de 2020.

Martins, Helder F. B.; Loquiha, O.; Hansine, Rogers; Macicame, Ivalda; Maure,

Genito A.; Marrufo, Tatiana J.; Sacarlal, Jahit; Abacassamo, Fátima; Mucavele,

Helio E Saúte, Francisco C. M.: Morbilidade e letalidade pelo COVID-19:

Uma análise de eventuais factores influenciadores. Maputo, 30/08/2020. Artigo

já aceite para publicação na Revista Moçambicana de Ciências da Saúde. Uma

versão inglesa já publicada, como Artigo de Investigação, no Journal of Infectious

Diseases & Case Reports, 2020, Volume 1(4): 2-17

World Health Organization (WHO): Coronavirus disease (COVID-19) advice

to the public. In: https://www.who.int/emergencies/diseases/novel-coronavirus-

/advice-for-public. Acessado a 7/06/2020.

World Health Organization (WHO): Country & Technical Guidance - Coronavirus

disease (COVID-19). In: https://www.who.int/emergencies/diseases/

novel-coronavirus-2019/technical-guidance. Acessado a 7/06/2020.

Benskin, Linda L.: Massive Review of papers on Vitamin D and COVID-19:

A Basic Review of the Preliminary Evidence that Covid-19 Risk and Severity is

Increased in Vitamin D Deficiency. Pré-publicação ResearchGate (a 3 de Julho de

for publication in Frontiers in Public Health. In: https://vitamindwiki.

com/Massive+Review+of+papers+on+Vitamin+D+and+COVID-19+-

-+July+3%2C+2020. Acessado a 5/08/2020.

Biesalski, Hans K.: Vitamin D deficiency and co-morbidities in COVID-19

patients – A fatal relationship? NFS Journal, 2020 Aug; 20: 10–21. Publicado

online: a 7 de Junho de 2020. In: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC7276229/. Acessado a 5/08/2020.

Panagiotou, Grigorios & al.: Low serum 25-hydroxyvitamin D (25[OH]D)

levels in patients hospitalised with COVID-19 are associated with greater disease

severity. Clinical Endocrinology, 3 de Julho de 2020. In: https://doi.org/

1111/cen.14276. Acessado a 4/08/2020.

Munshi, Ruhul et al.: Vitamin D insufficiency as a potential culprit in critical

COVID-19 patients. J. Medical Virology, 27 de Julho de 2020. In: https://

doi.org/10.1002/jmv.26360. Acessado a 4/08/2020.

Merzon, Eugene et al.: Low plasma 25(OH) vitamin D level is associated

with increased risk of COVID-19 infection: an Israeli population-based study.

The FEBS Journal (2020). In: https://doi.org/10.1111/febs.15495. Acessado

a 4/08/2020.

Laird, E., Rhodes, J. & Kenny, R. A.: Vitamin D and inflammation: Potential

implications for severity of Covid-19. Ir Med J; Vol 113; No. 5; P81 (2020).

In: http://www.imj.ie/wp-content/uploads/2020/05/Vitamin-D-and-Inflammation-

Potential-Implications-for-Severity-of-Covid-19.pdf. Acessado a

/08/2020.

Braiman, Mark: Latitude Dependence of the COVID-19 Mortality Rate—A

Possible Relationship to Vitamin D Deficiency? SSRN Electron. J. (Postado em

de Junho de 2020). In: https://doi:10.2139/ssrn.3561958. Acessado a

/08/2020.

Mccartney, D. M. , Byrne, D.G.: Optimisation of Vitamin D Status for

Enhanced Immuno-protection Against Covid-19. Ir. Med. J.; Vol 113; No. 4; P58

(2020). In: http://www.imj.ie/wp-content/uploads/2020/04/Optimisation-of-Vitamin-D-Status-for-Enhanced-Immuno-protection-Against-Covid-19.pdf.

Acessado a 4/08/2020.

Daneshkhah, Ali, Agrawal, Vasundhara, Eshein, Adam, Subramanian, Hariharan,

Kumar Roy, Hemant And Backman, Vadim: The Possible Role of Vitamin D

in Suppressing Cytokine Storm and Associated Mortality in COVID-19 Patients.

Pré-publicação MedRxiv. In: https://doi.org/10.1101/2020.04.08.20058578.

Acessado a 4/08/2020.

Molloy, E. J. & Murphy, N.: Vitamin D, COVID-19 and children. Ir Med J; Vol

; No. 4; P59 (2020). Acessado a 4/08/2020.

Ilie, P. C., Stefanescu, S. And Smith, L.: The role of vitamin D in the prevention

of coronavirus disease 2019 infection and mortality. Aging Clin. Exp.

Res., 32, 1195–1198 (2020). In: https://doi:10.1007/s40520-020-01570-8.

Acessado a 4/08/2020.

Jakovac, H.: Letter to the Editor: COVID-19 and vitamin D-Is there a link

and an opportunity for intervention? American Journal of Physiology - Endocrinology

and Metabolism (2020) https://doi:10.1152/ajpendo.00138.2020.

Acessado a 4/08/2020.

Mitchell, Fiona: Vitamin-D and COVID-19: do deficient risk a poorer outcome?

The Lancet Diabetes & Endocrinology, Volume 8, Issue 7, P. 570, 1 de Julho

de 2020. In: https://doi.org/10.1016/S2213-8587(20)30183-2. Acessado a

/08/2020.

Yong, Shin Jie: Vitamin D as an Independent Risk Factor for COVID-19

Death. Microbial Instincts: Pré-publicação em Maio de 2020. In: https://

medium.com/microbial-instincts/lack-of-vitamin-d-as-an-independent-

-risk-factor-for-covid-19-death-82365d0520fa. Acessado a 5/08/2020.

Rhodes, J. M., Subramanian, S., Laird, E. & Kenny, R. A.: Editorial: Low

population mortality from COVID-19 in countries south of latitude 35 degrees

North supports vitamin D as a factor determining severity. Alimentary Pharmacology

and Therapeutics, Volume51, Issue12, Pages 1434-1437 (Junho de 2020).

In: https://doi:10.1111/apt.15777. Acessado a 4/08/2020.

Panarese, Alba & Shahini, Endrit: Letter: Covid-19, and Vitamin D. Alimentary

Pharmacology and Therapeutics, Volume51, Issue10, Pages 993-995 (Maio

de 2020) https://doi:10.1111/apt.15752. Acessado a 4/08/2020.

Marik, P. E., Kory, P. & Varon, J.: Does vitamin D status impact mortality

from SARS-CoV-2 infection? Med. Drug Discov.; 6: 100041 (Junho de 2020). In:

https://doi:10.1016/j.medidd.2020.100041. Acessado a 4/08/2020.

Hastie, Claire E. et al.: Vitamin D concentrations and COVID-19 infection

in UK Biobank. Diabetes & Metabolic Syndrome: Clinical Research & Reviews,

Volume 14, Issue 4, Julho/Agosto de 2020, Páginas 561-565. In: https://

doi.org/10.1016/j.dsx.2020.04.050. Acessado a 15/09/2020.

Lytle, C. D. E Sagripanti, J-L.: Predicted inactivation of viruses of relevance

to biodefense by solar radiation. J Virol.; 79(22):14244-14252 (2005). In:

https://doi:10.1128/JVI.79.22.14244-14252.2005. Acessado a 5/06/2020.

Norval, M.: The Effect of Ultraviolet Radiation on Human Viral Infections.

Photochemistry and Photobiology.; 82(6):1495 (2006). In: https://

doi:10.1562/2006-07-28-ir-987. Acessado a 5/06/2020.

Sobral, M. F. F.; Duarte, G. B.; Da Penha Sobral, A. I. G.; Marinho, M. L. M.

and De Souza Melo, A.: Association between climate variables and global transmission

of SARS-CoV-2. Sci Total Environ.; 729:138997 (2020). In: https://

doi:10.1016/j.scitotenv.2020.138997. Acessado a 5/06/2020.

Shi, P.; Dong, Y.; Yan, H., et al.: Impact of temperature on the dynamics of the

COVID-19 outbreak in China. Sci Total Environ.; 728:138890 (2020). In:

https://doi:10.1016/j.scitotenv.2020.138890. Acessado a 5/06/2020.

Bashir, M. F.; Ma, B.; Bilal et al. Correlation between climate indicators and

COVID-19 pandemic in New York, USA. Sci Total Environ.; 728:138835 (2020).

In: https://doi:10.1016/j.scitotenv.2020.138835. Acessado a

/06/2020.

Kamat, Nandkumar: Hypothesis on COVID-19 Indian Subcontinental Dirtiness

Exposure Dividend(DED). Taleigão, Universidade de Goa. 3 de Abril de

Rolot, Marion et al.: Helminth-induced IL-4 expands bystander memory

CD8+ T cells for early control of viral infection. Nature Communications (2018)

:4516. Doi: 10.1038/s41467-018-06978-5. In: https://www.nature.com/articles/

s41467-018-06978-5. Acessado a 14 de Agosto de 2020.

Helmby, Helena: Helminths and our immune system: Friend or foe? Parasitology

International 58 (2009) 121–127. Doi: 10.1016/j.parint.2009.02.001.

In: https://pubmed.ncbi.nlm.nih.gov/19223020/. Acessado a 14 de Agosto de

Hays, R.; Pierce, D.; Giacomin, P.; Loukas, A.; Bourke, P. E Mcdermott, R.:

Helminth coinfection and COVID-19: An alternate hypothesis. PLoS Negl Trop

Dis 14(8): e0008628 (Agosto de 2020).In: https://doi.org/10.1371/journal.

pntd.0008628HAYS. Acessado a 19 de Agosto de 2020.

Spencer, Roy W.: Some COVID-19 vs. Malaria Numbers: Countries with Malaria

have Virtually no Coronavirus Cases Reported. Roy Spencer’s Home Blog.

de Março de 2020. In: http://www.drroyspencer.com/2020/03/some-covid-

-vs-malaria-numbers-countries-with-malaria-have-virtually-no-coronavirus-

cases-reported/. Acessado a 5/04/2020.

Napoli, Pietro Emanuele E Nioi, Matteo: Global Spread of Coronavirus Disease

and Malaria: An Epidemiological Paradox in the Early Stage of A Pandemic.

Editorial – Journal of Clinical Medicine, 2020, 9, 1138 (16 de Abril de

.In: https://doi:10.3390/jcm9041138. Acessado a 5/05/2020.

Mitchell Geoff e Khuder, Sadik: Markedly Lower Rates of Coronavirus Infection

and Fatality in Malaria-Endemic Regions – A Clue to Treatment? Elsevier

– SSRN. In: https://ssrn.com/abstract=3586954. Acessado a 5/06/2020.

Muneer, Azhar; Kumari, Kiran; Tripathi, Manish; Srivastava, Rupesh; Mohmmed,

Asif E Rathore, Sumit: Comparative analyses revealed reduced spread of

COVID-19 in malaria endemic countries. MedRxiv, pré-publicação em 14 de

Maio de 2020. In: https://doi.org/10.1101/2020.05.11.20097923.

Acessado a 5/06/2020.

Schrum, Jacob E.; Crabtree, Juliet N.; Dobbs, Katherine R.; Kiritsy, Michael

C.; Reed, George W.; Gazzinelli, Ricardo T.; Netea, Mihai G.; Kazura,

James W.; Dent, Arlene E.; Fitzgerald, Katherine A. And Golenbock, Douglas

T.: Plasmodium falciparum induces trained innate immunity. J Immunol. (2018

Feb 15); 200(4): 1243–1248. Publicado online a 12 de Janeiro de 2018. Doi:

4049/jimmunol.1701010. In: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5927587/. Acessado a 8/08/2020.

WHO (World Health Organization): World Malaria Report 2019. Genebra:

Licença: CC BY-NC-SA 3.0 IGO.

Miller, Aaron, Reandelar, Mac Josh, Fasciglione, Kimberly, Roumenova,

Violeta, Li, Yan And Otazu, Gonzalo H.: Correlation between universal

BCG vaccination policy and reduced morbidity and mortality for COVID-

: an epidemiological study. Yale, 24 de Março de 2020. In: https://doi.

org/10.1101/2020.03.24.20042937 . Acessado a 31/03/2020.

Gursela, Mayda E Gursel, Ihsan: Is Global BCG Vaccination Coverage Relevant

To The Progression Of SARS-CoV-2 Pandemic?. Med Hypotheses, 6 de Abril

de 2020. In: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136957/.

Acessado a 13/04/2020.

Dayal, Devi e Gupta, Saniya: Connecting BCG Vaccination and COVID-19:

Additional Data. Preprint MedRxiv, 19 de Abril de 2020. In: doi: https://doi.or

g/10.1101/2020.04.07.20053272. Acessado a 5 de Junho de 2020.

Ozdemir, Cevdet; Kucuksezer, Umut Can E Tamay, Zeynep Ulker: Is BCG

vaccination affecting the spread and severity of COVID-19? Allergy – European

Journal of Allergy and Clinical Immunology (online), 24 de Abril de 2020. In:

https://doi.org/10.1111/all.14344. Acessado a 5 de Junho de 2020.

Berg, Martha K. Et Al: Mandated Bacillus Calmette-Guérin (BCG) vaccination

predicts flattened curves for the spread of COVID-19. Pré-publicação MedRxiv,

de Maio de 2020. doi: https://doi.org/10.1101/2020.04.05.200541

Acessado a 5 de Junho de 2020.

Hegarty, Paul, Kamat, Ashish M., Zafirakis, Helen And Dinardo, Andrew:

BCG vaccination may be protective against Covid-19. Pré-publicação, Março de

In: https://www.researchgate.net/publication/340224580 Acessado a 12

de Abril de 2020.

Kurthkoti, Krishna, NANDINI, Dasgupta GAUTAM, Das: Can BCG vaccination

induced immune programming reduce the mortality in COVID-19 caused

by SARS Cov2? Thiruvanathapuram e Mumbai. Pré-publicação. 2020.

Kleinnijenhuis, J. et al.: Long-lasting effects of BCG vaccination on both

heterologous th1/th17 responses and innate trained immunity. J. Innate Immun.

, 152–158 (2014).

Netea, M. G. et al. Trained immunity: A program of innate immune memory

in health and disease. Science (80), 352, aaf1098–aaf1098 (2016).

Roth, A., Gustafson, P., Nhaga, A., Djana, Q., Poulsen, A., Garly, M. L.: BCG

vaccination scar associated with better childhood survival in Guinea-Bissau. Int J

Epidemiol., 34(3): 540–547 (2005).

Stensballe, L. G: Acute lower respiratory tract infections and respiratory syncytial

virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for

girls. Vaccine, 23: 1251–1257 (2005).

Netea, M.G., Quintin, J., Van Der Meer, J.W.: Trained immunity: a memory

for innate host defense. Cell Host Microbe, 9:355–361 (2011).

Wardhana, Datau E. A., Sultana, A.: The efficacy of Bacillus Calmette-Guerin

vaccinations for the prevention of acute upper respiratory tract infection in the

elderly. Acta Med Indones,43:185e90 (2011).

Netea, M. G. And Van Crevel, R.: BCG-induced protection: Effects on innate

immune memory. Seminars in Immunology, 26: 512–517 (2014).

Hollm-Delgado, M. G., Stuart, E. A., Black, R. E.: Acute lower respiratory

infection among Bacille Calmette-Guérin (BCG)-vaccinated children. Pediatrics,

(1):e73–e81 (2014).

De Castro, M. J., Pardo-Seco, J., Martinón-Torres, F.: Nonspecific (Heterologous)

Protection of Neonatal BCG Vaccination Against Hospitalization Due to

Respiratory Infection and Sepsis. Clin Infect Dis., 60(11):1611–1619 (2015).

Jensen, K.J., Larsen, N., Biering-Sorensen, S., Andersen, A., Eriksen, H.

B., Monteiro, I.: Heterologous immunological effects of early BCG vaccination

in low-birth-weight infants in Guinea-Bissau: a randomized controlled trial. J.

Infect. Dis. 211:956–967 (2015).

Arts, R. J. W. and al.: BCG Vaccination Protects against Experimental Viral

Infection in Humans through the Induction of Cytokines Associated with Trained

Immunity. Cell Host Microbe. 23(1):89-100.e5 (10 de Janeiro de 2018).

Freyne, B. and al.: Neonatal BCG Vaccination Influences Cytokine Responses

to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis.,

(11):1798-1808 (5 de Maio de 2018).

Martins, Helder: “Descolonização das Vacinas”. Apresentação feita numa sessão

cultural da AMEAM (Associação dos médicos Escritores e Artistas de Moçambique),

em Maputo, a 18/12/2015.

Official Records Of The World Health Organization No. 217: Twenty- Seventh

World Health Assembly Geneva, 7 -23 May 1974 Part I Resolutions And

Decisions. In https://apps.who.int/iris/bitstream/handle/10665/85874/Official_

record217_eng.pdf?sequence=1&isAllowed=y. Acessado em 18/02/2019.

Martins, Helder: «Bringing to widespread Public Use latest Technologies and

Innovations in Vaccines and Immunization: A Point of View from a Developing

Country – Mozambique». Texto de Apoio a uma apresentação feita no: “32nd

International Conference on Vaccines and Immunization”. Roma (Itália), 21 de

Março de 2019.

Davies, Gareth et al.: The Facts: Vitamin D and Coronavirus. Poster, Londres,

de Setembro de 2020. Acessado a 9/10/2020.

Lau, F. H. et al.: Vitamin D Insufficiency is Prevalent in Severe COVID-19.

medRxiv (2020) https://doi:10.1101/2020.04.24.20075838.

Carter, Stephen J., Baranauskas, Marissa N. and Fly, Alyce D.: Considerations

for Obesity, Vitamin D, and Physical Activity Amid the COVID-19 Pandemic.

Obesity, Volume28, Issue7, Julho de 2020, páginas 1176-1177. In:

https://doi.org/10.1002/oby.22838. Acessado a 18/08/2020.

Grant, William B.; Lahore, Henry; Mcdonnell, Sharon L.; Baggerly, Carole

A.; French, Christine B.; Aliano, Jennifer L. and Bhattoa, Harjit P.: Evidence

that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19

Infections and Deaths. Nutrients, 12(4), 2 de Abril de 2020. In:

https://pesquisa.bvsalud.org/controlecancer/ resource/pt/mdl-32252338.

Acessado a 18/08/2020.

Isaia, Giancarlo and Medico, Enzo: Associations between hypovitaminosis

D and COVID-19: a narrative review. Aging Clinical and Experimental Research

(23 de Julho de 2020). In: https://doi.org/10.1007/s40520-020-01650-9.

Acessado a 18/08/2020.

Laird, Eamon and Kenny, Rose Anne: Vitamin D deficiency in Ireland: Implications for COVID-19. Results from the Irish longitudinal study on ageing. 2020. https://doi.org/10.38018/TildaRe.2020-05. Acessado a 18/08/2020.

Hedlund, Robert; Diamond, Trude K. and Uversky, Vladimir N.: The latitude hypothesis, vitamin D, and SARS-Co-V2. Journal of Biomolecular Structure and Dynamics. Publicado online a 17 de Julho de 2020. In: https://doi.org/10.1080/07391102.2020.1794973. Acessado a 18/08/2020.

Ali, Nurshad: Role of vitamin D in preventing of COVID-19 infection, progression and severity. Journal of Infection and Public Health, Disponível online em 20 de Junho de 2020. In: https://doi.org/10.1016/j.jiph.2020.06.021. Acessado a 18/08/2020.

Arboleda, John F. and Urcuqui-Inchima, Silvio: Vitamin D Supplementation: A Potential Approach for Coronavirus/COVID-19 Therapeutics? Front. Immunol. 11:1523 (2020). In: https://doi.org/10.3389/fimmu.2020.01523. Acessado a 18/08/2020.

Annweilera, Cédric; Caod, Zhijian and Sabatierf, Jean-Marc: Point of view: Should COVID-19 patients be supplemented with vitamin D? Maturitas, Volume 140, P24-26, October 01, 2020. Publicado a 7 de Junho de 2020. In: https://doi.org/10.1016/j.maturitas.2020.06.003. Acessado a 18/08/2020.

Razdan, Karan; Singh, Kuldeep And Singh, Dilpreet: Vitamin D Levels and COVID-19 Susceptibility: Is there any Correlation? Med. Drug. Discov. Pré-publicação,

a 2 de Junho de 2020. doi: 10.1016/j.medidd.2020.100051. In: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266578/. Acessado a 18/08/2020.

Mahdavi, Aida Malek: A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-

Medical Virology, Versão Online, Publicada em 25 de Junho de 2020 https://doi.org/10.1002/rmv.2119. Acessado a 18/08/2020.

D’avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolo, A.; Lucchini, R.; Keller, F. And Cantu, M.: 25-hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients (2020), 12(5), 1359. In: https://doi.org/10.3390/nu12051359. Acessado a 18/08/2020.

Davies, Gareth; Garami, Attila R. and Byers, Joanna: Evidence Supports a Causal Role for Vitamin D Status in COVID-19 Outcomes. MedRxiv Pré-publicação postada a 13 de Junho de 2020. In: doi: https://doi.org/10.1101/2020.05.01.20087965. Acessado a 18/08/2020.

Ebadi, Maryam and Montano-Loza, Aldo J.: Perspective: improving vitamin D status in the management of COVID-19. Eur J Clin Nutr 74, 856–859 (2020). In: https://doi.org/10.1038/s41430-020-0661-0. Acessado a 18/08/2020.

Martineau, Adrian R. and Forouhi, Nita G.: Vitamin D for COVID-19: a case to answer? The Lancet Diabetes-Endocrinology. Publicado online a 3 de Agosto de 2020. In: https://doi.org/10.1016/S2213-8587(20)30268-0. Acessado a 18/08/2020.

Hancocks, Nikki: COVID-19: Scientists raise the vitamin D alarm. NUTRAIngredients.com. Londres, 2 de Outubro de 2020. In: h t t p s : / /www.nutraingredients.com/article/2020/10/01COVID-19-scientists-raise-the-vitanine-D-alarm. Acessado a 5/10/2020.

Published
2020-10-21
How to Cite
1.
Martins H, Hansine R. COVID-19’s epidemiological and demographic analysis in Africa. ihmt [Internet]. 21Oct.2020 [cited 7Oct.2025];19:7-2. Available from: https://anaisihmt.com/index.php/ihmt/article/view/353