Diversidade genómica e perfil de resistência dos isolados clínicos de Mycobacterium avium circulantes em Portugal entre 2018 e 2022

  • Joana Rodrigues Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal; Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Portugal
  • Irene Rodrigues Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
  • Sofia Carneiro Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Departamento de Ciênci
  • Sónia Silva Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
  • Andrea Santos Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
  • Rita Macedo Laboratório Nacional de Referência de Micobactérias, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
Palavras-chave: Complexo Mycobacterium avium (MAC), Mycobacterium avium, MIRU-VNTR, Genotipagem, Testes de Suscetibilidade Antimicrobiana, Vigilância laboratorial, Micobactérias não tuberculosas, MNT

Resumo

Introdução: Nos últimos anos, infeções oportunistas por micobactérias não tuberculosas (MNT), têm ganho uma importância crescente na saúde pública, sendo a espécie Mycobacterium avium, a principal responsável pelo aumento de casos de doença humana. Estas infeções manifestam-se principalmente a nível respiratório podendo também ocorrer, sobretudo em indivíduos imunocomprometidos, infeção disseminada. Atualmente, o modo de transmissão não está estabelecido, contudo, a exposição ambiental é considerada a principal fonte de infeção. Assim, é essencial a realização de estudos epidemiológicos para identificar possíveis focos de infeção e, deste modo, melhorar os métodos de vigilância, prevenção e controlo da doença.
Objetivo: Avaliação da diversidade genómica e perfil de resistência de isolados clínicos de Mycobacterium avium circulantes em Portugal entre 2018 e 2022.
Métodos: Um conjunto de 42 estirpes de M. avium, isoladas entre 2018 e 2022, no Laboratório Nacional de Referência para Micobactérias (LNR-TB) do INSA, foi caracterizado quanto à sua diversidade genómica através da metodologia de tipagem molecular MIRU-VNTR. Adicionalmente, foram realizados testes de suscetibilidade fenotípica à claritromicina, moxifloxacina e linezolide em 40 (95%) estirpes e de suscetibilidade molecular por pesquisa de mutações nos genes 16S rRNA (rrs) e 23S rRNA (rrl), associados a resistência a aminoglicosídeos (AG) e macrólidos, respetivamente.
Resultados: Os testes de suscetibilidade fenotípica indicaram que 98% (39) das estirpes foram suscetíveis à claritromicina, enquanto apenas 25% (n=10) e 27,5% (n=11) foram suscetíveis ao linezolide e moxifloxacina. Verificou-se uma elevada correlação entre os resultados de testes de suscetibilidade fenotípica e genotípica relativamente aos macrólidos. A genotipagem por MIRU-VNTR revelou uma grande diversidade genética entre as estirpes. Usando threshold de 1 locus e 2 loci de permissão de diferença entre as estirpes, observou-se o agrupamento de dois clusters moleculares e 37 singletons e oito clusters e 20 singletons, respetivamente. No global, a metodologia MIRU-VNTR obteve um índice discriminatório de 0.9988.
Conclusão: Embora tenham sido detetados clusters mo- leculares, a análise dos perfis MIRU-VNTR é insuficiente para estabelecer relações epidemiológicas concretas. Para além dos dados demográficos dos doentes são necessários dados clínicos, o que pode requerer a ponderação de um sistema de notificação obrigatória para uma vigilância laboratorial da doença por M. avium mais assertiva.

Downloads

Não há dados estatísticos.

Referências

World Health Organization (WHO). World Leprosy Day 2023 [Internet]. 2023 [cited 2023 Jul 17]. Available from: https://www.who.int/news-room/events/detail/2023/01/29/default-calendar/act-now-end-leprosy-wld-2023

Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY-C, Gernaey AM, et al. Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean. PLoS ONE [Internet]. 2008;3(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565837/

Tortoli E. The Taxonomy of the Genus Mycobacterium. In: Nontuberculous Mycobacteria [NTM]: Microbiological, Clinical and Geographical Distribution. 2019.

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D801-D807. DOI: https://doi.org/10.1093/nar/gkab902

Kaczmarkowska A, Didkowska A, Kwiecien E, Stefanska I, Rzewuska M, Anusz K. The Mycobacterium avium complex– an underestimated threat to humans and animals. Annals of Agricultural and Environmental Medicine. 2022;29(1).

Hoefsloot W, Van Ingen J, Andrejak C, Ängeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. European Respiratory Journal. 2013;42(6).

Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. The International Journal of Tuberculosis and Lung Disease. 2014;18(11):1370–7. DOI: https://doi.org/10.5588/ijtld.14.0120

Daley CL. Mycobacterium avium Complex Disease. American Society for Microbiology [Internet]. 2017;32[Supplement 2]:U1–9. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.TNMI7-0045-2017

Honda JR, Virdi R, Chan ED. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Frontiers in Microbiology. 2018;9:2029. DOI: https://doi.org/10.3389/fmicb.2018.02029

Whiley H, Keegan A, Giglio S, Bentham R. Mycobacterium avium complex - the role of potable water in disease transmission. Journal of Applied Microbiology [Internet]. 2012;113(2):223–32. Available from: https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2672.2012.05298

Klanicova B, Slana I, Vondruskova H, Kaevska M, Pavlik I. Real-Time Quantitative PCR Detection of Mycobacterium avium Subspecies in Meat Products. Journal of Food Protection. 2011;74(4):636–40

Gill CO, Saucier L, Meadus WJ. Mycobacterium avium subsp. paratuberculosis in Dairy Products, Meat, and Drinking Water†. Journal of Food Protection. 2011;74(3):480–99.

Eslami M, Shafiei M, Ghasemian A, Valizadeh S, Al-Marzoqi AH, Shokouhi Mostafavi SK, et al. Mycobacterium avium paratuberculosis and Mycobacterium avium complex and related subspecies as causative agents of zoonotic and occupational diseases. Journal of Cellular Physiology. 2019;234(8):12415–21.

Sevilla IA, Molina E, Tello M, Elguezabal N, Juste RA, Garrido JM. Detection of Mycobacteria by Culture and DNA-Based Methods in Animal-Derived Food Products Purchased at Spanish Supermarkets. 2017;8. DOI: https://doi.org/10.3389/fmicb.2017.01030

Sgarioni SA, Hirata RDC, Hiroyuki Hirata M, Leite CQF, de Prince KA, Leite SR de A, et al. Occurrence of Mycobacterium bovis and non-tuberculous mycobacteria [NTM] in raw and pasteurized milk in the northwestern region of Paraná, Brazil. Brazilian Journal of Microbiology. 2014;45(2).

Dziedzinska R, Makovcova J, Kaevska M, Slany M, Babak V, Moravkova M. Nontuberculous mycobacteria on ready-to-eat, raw and frozen fruits and vegetables. J Food Prot. 2016;79(8).

Waddell LA, Rajic A, Stärk KDC, McEWEN SA. The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiology and infection [Internet]. 2015;143(15):3135–57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25989710/

Taylor RH, Falkinham JO, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol. 2000;66(4):1702–5.

Van Ingen J, Turenne CY, Tortoli E, Wallace RJ, Brown-Elliott BA. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int J Syst Evol Microbiol. 2018;68(11)

Thorel MF, Krichevsky M, Levy-Frebault V V. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol. 1990;40(3)

Bach H. What Role Does Mycobacterium avium subsp. paratuberculosis Play in Crohn’s Disease? Current Infectious Disease Reports. 2015;17(2):463. DOI: https://doi.org/10.1007/s11908-015-0463-z

Timms VJ, Daskalopoulos G, Mitchell HM, Neilan BA. The association of mycobacterium avium subsp. paratuberculosis with inflammatory bowel disease. PLoS One. 2016;11(2).

Ekundayo TC, Falade AO, Igere BE, Iwu CD, Adewoyin MA, Olasehinde TA, et al. Systematic and meta-analysis of Mycobacterium avium subsp. paratuberculosis related type 1 and type 2 diabetes mellitus. Sci Rep. 2022;12(1).

Mijs W, de Haas P, Rossau R, Van Der Laan T, Rigouts L, Portaels F, et al. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and “M. avium subsp. hominissuis” for the human/porcine type of M. avium. Int J Syst Evol Microbiol. 2002;52(5).

Heidary M, Nasiri MJ, Mirsaeidi M, Jazi FM, Khoshnood S, Drancourt M, et al. Mycobacterium aviumcomplex infection in patients with human immunodeficiency virus: A systematic review and meta-analysis. Journal of Cellular Physiology. 2018;234(7):9994–10001

To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. Journal of Clinical Medicine. 2020;9(8):2541

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Non-tuberculous Mycobacterial Diseases. American Journal of Respiratory and Critical Care Medicine. 2007;175(4):367–416

Corrigendum to: Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clinical Infectious Diseases. 2020;71(11):3023; DOI: https://doi.org/10.1093/cid/ciaa1062

Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex [CONVERT] a prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198(12).

Thibault VC, Grayon M, Boschiroli ML, Hubbans C, Overduin P, Stevenson K, et al. New variable-number tandem-repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: Comparison with IS900 and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol. 2007;45(8).

Biet F, Sevilla IA, Cochard T, Lefrançois LH, Garrido JM, Heron I, et al. Interand Intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains. BMC Microbiol. 2012;12.

Inagaki T, Nishimori K, Yagi T, Ichikawa K, Moriyama M, Nakagawa T, et al. Comparison of a variable-number tandem-repeat [VNTR] method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol. 2009;47(7).

van Soolingen D, de Haas PEW, Kremer K. Restriction Fragment Length Polymorphism Typing of Mycobacteria. In: Mycobacterium Tuberculosis Protocols. 2003.

Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. 1986;51(5):873–84.

Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11).

Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2011. Available from: https://pubmed.ncbi.nlm.nih.gov/31339680/

Kim SY, Kim DH, Moon SM, Song JY, Huh HJ, Lee NY, et al. Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium Complex and Mycobacterium abscessus clinical isolates. Sci Rep. 2021;11(1).

Mougari F, Loiseau J, Veziris N, Bernard C, Bercot B, Sougakoff W, et al. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. Journal of Antimicrobial Chemotherapy. 2017;72(6).

Cochard T, Branger M, Supply P, Sreevatsan S, Biet F. MAC-INMV-SSR: a web application dedicated to genotyping members of Mycobacterium avium complex [MAC] including Mycobacterium avium subsp. paratuberculosis strains. Infection, Genetics and Evolution. 2020;77

Mehdi Mirsaeidi, Sadikot RT. Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis. Int J Mycobacteriol. 2015;4(2):92–6.

Oliveira MJ, Gaio AR, Gomes M, Gonçalves A, Duarte R. Mycobacterium avium infection in Portugal. International Journal of Tuberculosis and Lung Disease. 2017;21(2)

Santos A, Carneiro S, Silva A, Gomes JP, Macedo R. Nontuberculous Mycobacteria in Portugal: Trends from the last decade. Pulmonology. 2022

Wetzstein N, Kohl TA, Andres S, Schultze TG, Geil A, Kim E, et al. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. International Journal of Infectious Diseases. 2020;93

Morimoto K, Namkoong H, Hasegawa N, Nakagawa T, Morino E, Shiraishi Y, et al. Macrolide-resistant mycobacterium avium complex lung disease: Analysis of 102 consecutive cases. Ann Am Thorac Soc. 2016;13(11)

Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex Lung Disease with a Macrolide, Ethambutol, and Clofazimine. Chest. 2003;124(4)

Kwon YS, Koh WJ, Daley CL. Treatment of Mycobacterium avium Complex Pulmonary Disease. Tuberculosis and Respiratory Diseases [Internet]. 2019;82(1):15–26

Rockland M, Ruth MM, Aalders N, Pennings L, Hoefsloot W, Wattenberg M, et al. Implementation of semiautomated antimicrobial susceptibility interpretation hardware for nontuberculous mycobacteria may overestimate susceptibility. J Clin Microbiol. 2018;57(4)

Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK, et al. GenoType NTMDR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium abscessus and Determination of Clarithromycin and Amikacin Resistance. J Clin Microbiol. 2019;57(8)

Pfister P, Hobbie S, Brüll C, Corti N, Vasella A, Westhof E, et al. Mutagenesis of 16 S rRNA C1409-G1491 base-pair differentiates between 6'OH and 6'NH3+ aminoglycosides. J Mol Biol. 2005;346(2)

Li M, Tzagoloff A. Identification of the paromomycin-resistance mutation in the 15 S rRNA gene of yeast mitochondria. Journal of Biological Chemistry. 1982;257(10)

Spangler EA, Blackburn EH. The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. Journal of Biological Chemistry. 1985;260(10):6334–40

Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE. Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol. 2005;187(14)

Shcherbakov D, Akbergenov R, Matt T, Sander P, Andersson DI, Böttger EC. Directed mutagenesis of mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in mycobacterium tuberculosis. Mol Microbiol. 2010;77(4)

Taniguchi H, Chang B, Abe C, Nikaido Y, Mizuguchi Y, Yoshida SI. Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J Bacteriol. 1997;179(15)

Radomski N, Thibault VC, Karoui C, De Cruz K, Cochard T, Gutiérrez C, et al. Determination of genotypic diversity of mycobacterium avium subspecies from human and animal origins by mycobacterial interspersed repetitive-unit-variable number tandemrepeat and IS1311 restriction fragment length polymorphism typing methods. J Clin Microbiol. 2010;48(4)

Imperiale BR, Moyano RD, Di Giulio AB, Romero MA, Alvarado Pinedo MF, Santangelo MP, et al. Genetic diversity of Mycobacterium avium complex strains isolated in Argentina by MIRU-VNTR. Epidemiol Infect. 2017;145(7)

Shin JI, Shin SJ, Shin MK. Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology. Microorganisms. 2020 Jan 10;8(1):98

Publicado
2024-01-31
Como Citar
1.
Rodrigues J, Rodrigues I, Carneiro S, Silva S, Santos A, Macedo R. Diversidade genómica e perfil de resistência dos isolados clínicos de Mycobacterium avium circulantes em Portugal entre 2018 e 2022. ihmt [Internet]. 31Jan.2024 [citado 29Fev.2024];22(2):22-. Available from: https://anaisihmt.com/index.php/ihmt/article/view/453