A diversidade genética do Mycobacterium tuberculosis e a sua contribuição para a tuberculose

  • Ana I. Fernandes i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal Programa Doutoral em Biologia Molecular e Celular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  • Margarida Saraiva i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
  • Tiago Beites i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Palavras-chave: Tuberculose, complexo do Mycobacterium tuberculosis, filogenia, severidade da doença

Resumo

Introdução: A tuberculose mantém-se um problema global, com mais de 10.6 milhões de novos casos e mais de 1.3 milhões de fatalidades por ano. Apesar de um declínio constante destes números ao longo das últimas décadas, a pandemia de COVID-19 reverteu esta tendência decrescente. É globalmente aceite que a luta contra a tuberculose passará por melhores meios de prevenção, diagnóstico e terapia. A investigação fundamental nestas áreas, e em particular a compreensão da resposta imunológica contra o Mycobacterium tuberculosis, é, pois, essencial. Muitos estudos mostram o papel central da resposta imunológica para o controlo da infeção por M. tuberculosis, evidenciando também que falhas nesta resposta conduzem frequentemente à progressão para uma doença ativa. Apesar de classicamente estes estudos serem focados nas características do hospedeiro, dados recentes apontam para um papel importante da diversidade genética do patógeno no moldar da resposta imunológica. Esta variável foi durante muito tempo negligenciada, dada a baixa diversidade genética do M. tuberculosis.
Objetivo: Com o advento da sequenciação de genomas completos, percebeu-se que apesar de diminuta, a diversidade genética do patógeno não é negligenciável. Nesta publicação pretendemos descrever como esta diversidade contribui ativamente para o resultado da infeção por M. tuberculosis.
Materiais e métodos: Neste artigo apresentamos uma revisão da literatura, baseada em artigos disponibilizados no PubMed e relatórios da Organização Mundial de Saúde pertinentes ao tema.
Resultados: Da análise efetuada apresentamos os principais argumentos que demonstram o impacto da diversidade genética do M. tuberculosis em vários aspetos da tuberculose e discutimos como a sua incorporação na investigação pode contribuir para o desenho de novas ferramentas mais eficazes contra esta doença.
Conclusão: As diferenças associadas às várias linhagens de M. tuberculosis realçam novos desafios para o estudo da tuberculose com implicações para a sua prevenção, diagnóstico e tratamento.

Downloads

Não há dados estatísticos.

Referências

Van Crevel R, Ottenhoff THM, Van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Vol. 15, Clinical Microbiology Reviews. 2002. p. 294–309.

Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. Vol. 58, J PREV MED HYG. 2017.

Paulson T. A Mortal Foe. 2013.

Fogel N. Tuberculosis: A disease without boundaries. Vol. 95, Tuberculosis. Churchill Livingstone; 2015. p. 527–31

Lefebvre N, Falzon D. Risk factors for death among tuberculosis cases: Analysis of European surveillance data. European Respiratory Journal. 2008 Jun;31[6]:1256–60.

World Health Organization. Global tuberculosis report 2023 [Internet]. 2023. Available from: https://iris.who.int/

Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Vol. 2, Nature Reviews Disease Primers. Nature Publishing Group; 2016.

Furin J, Cox H, Pai M. Tuberculosis. Vol. 393, The Lancet. Lancet Publishing Group; 2019. p. 1642–56.

Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016 Oct 1;13[10].

Drain PK, Bajema KL, Dowdy D, Dheda K, Naidoo K, Schumacher SG, et al. Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection [Internet]. 2018. Available from: http://cmr.asm.org/

Delogu G, Goletti D. The spectrum of tuberculosis infection: New perspectives in the era of biologics. Journal of Rheumatology. 2014;41(SUPPL. 91):11–6.

O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Vol. 31, Annual Review of Immunology. 2013. p. 475–527.

Sousa J, Saraiva M. Paradigm changing evidence that alter tuberculosis perception and detection: Focus on latency. Infection, Genetics and Evolution. 2019 Aug 1;72:78–85.

Lin PL, Flynn JL. The End of the Binary Era: Revisiting the Spectrum of Tuberculosis. The Journal of Immunology. 2018 Nov 1;201[9]:2541–8.

Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Vol. 17, Nature Reviews Immunology. Nature Publishing Group; 2017. p. 691–702.

Orgeur M, Brosch R. Evolution of virulence in the Mycobacterium tuberculosis complex. Vol. 41, Current Opinion in Microbiology. Elsevier Ltd; 2018. p. 68–75.

Keshavjee S, Farmer PE. Tuberculosis, Drug Resistance, and the History of Modern Medicine. New England Journal of Medicine. 2012 Sep 6;367[10]:931–6.

Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Vol. 26, Seminars in Immunology. Academic Press; 2014. p. 431–44.

Bastos HNE, Machado H, Sousa J, Veiga MI, Ramos A, Carvalho T, et al. Tuberculosis severity and its association with pathogen phylogeny and properties. European Respiratory Journal [Internet]. 2017 Sep 1;50(suppl 61):PA3046. Available from: http://erj.ersjournals.com/content/50/suppl_61/PA3046.abstract

Brosch R, Gordon S V, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex [Internet]. Vol. 99. 2002. Available from: www.pnas.orgcgidoi10.1073pnas.052548299

Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R, et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front Microbiol. 2018 Nov 27;9(NOV).

Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens [Internet]. 2015. Available from: www.immunologicalreviews.com

Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. In: Gagneux S, editor. Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control [Internet]. Cham: Springer International Publishing; 2017. p. 1–26. Available from: https://doi.org/10.1007/978-3-319-64371-7_1

Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013 Oct;45[10]:1176–82.

Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008 Dec;6[12]:2658–71.

Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial lineages causing pulmonary and extrapulmonary Tuberculosis, Ethiopia. Emerg Infect Dis. 2013 Mar;19[3]:460–3.

Gonçalves Vasconcellos SE, Huard RC, Niemann S, Kremer K, Santos AR, Suffys PN, et al. Distinct genotypic profiles of the two major clades of Mycobacterium africanum [Internet]. 2010. Available from: http://www.biomedcentral.com/1471-2334/10/80

Reed MB, Pichler VK, Mcintosh F, Mattia A, Fallow A, Masala S, et al. Major mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol. 2009 Apr;47[4]:1119–28.

Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, et al. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One. 2011 Sep 8;6[9].

Portevin D, Gagneux S, Comas I, Young D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 2011 Mar;7[3].

Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016 Dec 1;48[12]:1535–43.

Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015 Mar 1;47[3]:242–9.

Bastos HN, Osório NS, Gagneux S, Comas I, Saraiva M. The troika hostpathogen-extrinsic factors in tuberculosis: Modulating inflammation and clinical outcomes. Vol. 8, Frontiers in Immunology. Frontiers Media S.A.; 2018.

Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, et al. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet [Internet]. 2020;7. Available from: https://doi.org/10.1146/annurev-genet-022820-

Click ES, Moonan PK, Winston CA, Cowan LS, Oeltmann JE. Relationship between mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clinical Infectious Diseases. 2012 Jan 15;54[2]:211–9.

Séraphin MN, Doggett R, Johnston L, Zabala J, Gerace AM, Lauzardo M. Association between Mycobacterium tuberculosis lineage and site of disease in Florida, 2009–2015. Infection, Genetics and Evolution. 2017 Nov 1;55:366–71.

Pareek M, Evans J, Innes J, Smith G, Hingley-Wilson S, Lougheed KE, et al. Ethnicity and mycobacterial lineage as determinants of tuberculosis disease phenotype. Thorax. 2013;68[3]:221–9.

De Souza GA, Fortuin S, Aguilar D, Pando RH, McEvoy CRE, Van Helden PD, et al. Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hypervirulent clinical Mycobacterium tuberculosis Beijing isolates. Molecular and Cellular Proteomics. 2010 Nov;9[11]:2414–23.

Hanekom M, Gey Van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM. Mycobacterium tuberculosis Beijing genotype: A template for success. Vol. 91, Tuberculosis. 2011. p. 510–23.

De Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, et al. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in the Gambia. Journal of Infectious Diseases. 2008 Oct 1;198[7]:1037–43.

Nebenzahl-Guimaraes H, Verhagen LM, Borgdorff MW, Van Soolingena D. Transmission and progression to disease of mycobacterium tuberculosis phylogenetic lineages in the Netherlands. J Clin Microbiol. 2015 Oct 1;53[10]:3264–71.

Thwaites G, Caws M, Chau TTH, D’Sa A, Lan NTN, Huyen MNT, et al. Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J Clin Microbiol. 2008;46[4]:1363–8.

Coscolla M. Biological and Epidemiological Consequences of MTBC Diversity. In: Gagneux S, editor. Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control [Internet]. Cham: Springer International Publishing; 2017. p. 95–116. Available from: https://doi.org/10.1007/978-3-319-64371-7_5

Buu TN, van Soolingen D, Huyen MNT, Lan NTN, Quy HT, Tiemersma EW, et al. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: A population-based study. PLoS One. 2012 Aug 13;7[8].

Niobe-Eyangoh SN, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, et al. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003 Jun 1;41[6]:2547–53.

Groenheit R, Ghebremichael S, Svensson J, Rabna P, Colombatti R, Riccardi F, et al. The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited. PLoS One. 2011;6[4].

Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. Nature [Internet]. 1940;146(3713):837. Available from: https://doi.org/10.1038/146837a0

Davies J. Origins and evolution of antibiotic resistance. Vol. 12, Microbiología (Madrid, Spain). 1996. p. 9–16.

O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendation. The Review on Antimicrobial Resistance. 2016.

World Health Organization. Definitions and reporting framework for tuberculosis-2013 revision.

Boritsch EC, Khanna V, Pawlik A, Honoré N, Navas VH, Ma L, et al. Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9876–81.

Machado D, Perdigão J, Ramos J, Couto I, Portugal I, Ritter C, et al. Highlevel resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. Journal of Antimicrobial Chemotherapy. 2013 Aug;68[8]:1728–32.

Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. Vol. 41, FEMS Microbiology Reviews. Oxford University Press; 2017. p. 354–73.

Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013 Jul;45[7]:784–90.

Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Vol. 16, Nature Reviews Microbiology. Nature Publishing Group; 2018. p. 202–13.

Spies FS, Ribeiro AW, Ramos DF, Ribeiro MO, Martin A, Palomino JC, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol. 2011 Jul;49[7]:2625–30.

Merker M, Kohl TA, Barilar I, Andres S, Fowler PW, Chryssanthou E, et al. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Med. 2020 Mar 6;12(1).

Bateson A, Ortiz Canseco J, McHugh TD, Witney AA, Feuerriegel S, Merker M, et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother [Internet]. 2022;77[6]:1685–93. Available from: http://europepmc.org/abstract/MED/35260883

Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. New England Journal of Medicine. 2020 Mar 5;382[10]:893–902.

Netikul T, Palittapongarnpim P, Thawornwattana Y, Plitphonganphim S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. Infection, Genetics and Evolution [Internet]. 2021;91:104802. Available from: https://www.sciencedirect.com/science/article/pii/S156713482100099X

Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol. 2022 Jun 1;7[6]:766–79.

Tientcheu LD, Koch A, Ndengane M, Andoseh G, Kampmann B, Wilkinson RJ. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Vol. 47, European Journal of Immunology. Wiley-VCH Verlag; 2017. p. 432–45.

Carmona J, Cruz A, Moreira-Teixeira L, Sousa C, Sousa J, Osorio NS, et al. Mycobacterium tuberculosis Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response. PLoS One. 2013 Jun 26;8[6].

Lúcia Moreira-Teixeira, Mayer-Barber K, Sher A, O’Garra A. Type I interferons in tuberculosis: Foe and occasionally friend. Vol. 215, Journal of Experimental Medicine. Rockefeller University Press; 2018. p. 1273–85.

Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, Thuong NTT, et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 2008;4[3].

Sousa J, Cá B, Maceiras AR, Simões-Costa L, Fonseca KL, Fernandes AI, et al. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun. 2020 Dec 1;11(1).

Bobba S, Khader SA. Rifampicin drug resistance and host immunity in tuberculosis: more than meets the eye. Vol. 44, Trends in Immunology. Elsevier Ltd; 2023. p. 712–23.

Delogu G, Provvedi R, Sali M, Manganelli R. Mycobacterium tuberculosis virulence: Insights and impact on vaccine development. Vol. 10, Future Microbiology. Future Medicine Ltd.; 2015. p. 1177–94.

Pérez I, Uranga S, Sayes F, Frigui W, Samper S, Arbués A, et al. Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro–American genetic background confers optimal vaccine potential. EBioMedicine. 2020 May 1;55.

De Jong BC, Hill PC, Brookes RH, Gagneux S, Jeffries DJ, Otu JK, et al. Mycobacterium africanum Elicits an Attenuated T Cell Response to Early Secreted Antigenic Target, 6 kDa, in Patients with Tuberculosis and Their Household Contacts [Internet]. Available from: https://academic.oup.com/jid/article/193/9/1279/1013582

Zumla A, Maeurer M, Chakaya J, Hoelscher M, Ntoumi F, Rustomjee R, et al. Towards host-directed therapies for tuberculosis. Vol. 14, Nature Reviews Drug Discovery. Nature Publishing Group; 2015. p. 511–2.

Publicado
2024-01-31
Como Citar
1.
Fernandes AI, Saraiva M, Beites T. A diversidade genética do Mycobacterium tuberculosis e a sua contribuição para a tuberculose. ihmt [Internet]. 31Jan.2024 [citado 27Jul.2024];22(2):113-20. Available from: https://anaisihmt.com/index.php/ihmt/article/view/463