Diagnóstico molecular rápido em ambulatório
Resumo
A tecnologia em Ponto de Cuidado (POCT) revolucionou o diagnóstico clínico com testes mais rápidos e eficientes. O avanço do teste molecular em POCT (mPOCT) combina a agilidade do POCT com a precisão da biologia molecular, permitindo diagnósticos precisos e eficazes. A biologia molecular amplia o espectro de diagnósticos, abrangendo desde infeções respiratórias até doenças genéticas. Os testes de biologia molecular, como a PCR (Polymerase Chain Reaction), são essenciais para o diagnóstico rápido e sensível de doenças infecciosas. A evolução de PCR em POCT evidencia sua relevância para ambientes com acesso limitado a laboratórios mais complexos e equipados. Contudo, a eficácia do mPOCT ainda exige formação adequada e seleção criteriosa dos sistemas, visando a simplicidade, robustez e clareza na interpretação dos resultados. Alem disso os patógenos comuns para países em desenvolvimento precisam de ter maior representação nos mPOCT. As tecnologias de diagnóstico mPOC buscam ser acessíveis, simples e portáteis. Este artigo faz uma revisão breve de aspetos tecnológicos que aproximam cada vez mais o diagnóstico laboratorial de referência ao paciente. Começando pelas tecnologias tradicionais como PCR que em tempos revolucionou diagnóstico molecular permitindo a deteção e análise quantitativa em tempo real discutem-se agora as tecnologias que estão a mudar mPOCT moderno. Assim, a PCR digital oferece quantificação absoluta de genes-alvo. Inovações em primers e sondas otimizam a precisão do diagnóstico molecular. A eficácia e custo dos testes moleculares são influenciados pela escolha do detetor, com sensores eletroquímicos surgindo como opção promissora de baixo custo para ambientes com recursos limitados. Técnicas de amplificação isotérmica permitiram baixar as exigências energéticas e restrições de armazenamento de reagentes que são aspetos críticos de POCT. A nanotecnologia potencializa diagnósticos moleculares em relação à qualidade dos resultados e miniaturização. Sistemas microfluídicos compactam várias funções em dispositivos minúsculos permitindo a automação que por sua vez reduz significativamente os erros de utilizador nos testes. Microarrays detectam múltiplos ácidos nucleicos e anticorpos ao mesmo tempo permitindo paneis diagnósticos sintomáticos. Sequenciações de nova e terceira gerações têm potencial completamente substituir todas as outras tecnologias de mPOCT no futuro e já são fundamentais para diagnósticos e rastreamento de epidemias.Downloads
Referências
Kost G.J. Goals, guidelines, and principles for point-of-care testing. Em: Kost GJ editor. Principles and practice of point-of-care testing. Lippincott Williams & Wilkins, Philadelphia; 2002, pp 3–12
Price CP. Point of care testing. BMJ. 2001;322(7297):1285-8.
Luppa PB, Junker R. Point-of-Care Testing. Principles and Clinical Applications. Springer. 2018
St John A, Price CP. Existing and Emerging Technologies for Point-of-Care Testing. Clin Biochem Ver. 2014;35(3):155-67.
World Bank. World development report: making ser- vices work for poor people. New York (NY): World Bank. 2004.
Lipsitch M., e Siber, G. R. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem? Mbio. 2016;7(3):e00428-16.
Maurin M. Point-of-care molecular tests for infectious diseases. Clin Chim Acta. 2019; 493:138-47.
Pariyo GW , Gouws E, Bryce J, Burnham G. Improving Facility-Based Care for Sick Children in Uganda: Training Is Not Enough. Health Policy and Plan. 2005;20 (suppl 1):i58-i68.
Weber NC, Klepser ME, Akers JM, Klepser DG, Adams AJ. Use of CLIA-waived point-of-care tests for infectious diseases in community pharmacies in the United States. Expert Rev Mol Diagn. 2016;16(2):253-64
Pollock, N. R., et al. Correlation of SARS-CoV-2 nucleic acid test and rapid antigen test cycle threshold values. medRxiv 2020.11.10.20227371 [Preprint]. 2020 [cited 2023 Jul 13]. Available from: https://www.medrxiv.org/content/10.1101/2020.11.10.20227371v1
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullins KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487-91.
Lee D, Chen P-J, Lee G-B. The evolution of real-time PCR machines to realtime PCR chips. Biosens Bioelectron. 2010;25(7):1820-4.
Niemz A, Ferguson T M, Boyle D S. Point-of-care nucleic acid testing for infectious diseases. Trends in Biotechnology. 2011;29(5):240-50.
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 2010;9(3): 1152-82.
Reischl U, Drosten C, Geißdörfer W, Göbel U, Hoff- mann KS, Mauch H, Meyer T, Moter A, von Müller L, Panning M et al. MiQ 1: Nukleinsäure-Amplifikationstechniken (NAT), 3rd Edition, Em: Mikrobio- logisch-infektiologische Qualitätsstandards (MiQ) Qualitätsstandards in der mikrobiologisch-infektio- logischen Diagnostik. Urban & Fischer, Munich; 2011. p. 1–80
Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412-8.
Drain P K, Hyle E P, Noubary F, Freedberg K A, Wilson D, Bishai W R, Rodriguez W, Bassett I V. Diagnostic point-of-care tests in resource-limited settings. The Lancet Infect Dis. 2014;14(3):239-49.
Stürenburg E, Junker R. Patientennahe Diagnostik in der Mikrobiologie. Dtsch Ärzteblatt. 2009;106:48–54
Bosevska G, Panovski N, Janceska E, Mikik V, Topuzovska IK, Milenkovik Z Comparison of Directigen Flu A+B with Real Time PCR in the Diagnosis of Influenza. Folia Med (Plovdiv). 2015;57(2):104–10
Jokela P, Vuorinen T, Waris M, Manninen R. Performance of the Alere i influenza A&B assay and mariPOC test for the rapid detection of influenza A and B viruses. J Clin Virol. 2015;70:72–6
Nguyen Van JC, Caméléna F, Dahoun M, Pilmis B, Mizrahi A, Lourtet J, Behilil S, Enouf V, Le Monnier A. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV. Diagn Microbiol Infect Dis. 2016;85(1):19–22
Spina A, Kerr KG, Cormican M, Barbut F, Eigentler A, Zerva L, Tassios P, Popescu GA, Rafila A, Eerola E, Batista J, Maass M, Aschbacher R, Olsen KE, Allerberger F Spectrum of enteropathogens detected by the Film-Array GI Panel in a multicentre study of community-acquired gastroenteritis. Clin Microbiol Infect. 2015;21(8):719–28
Babady NE. The FilmArray respiratory panel: an automated, broadly multiplexed molecular test for the rapid and accurate detection of respiratory pathogens. Expert Rev Mol Diagn. 2013;13(8):779–88
Stimpfle F, Karathanos A, Droppa M, Metzger J, Rath D, Müller K, Tavlaki E, Schäffeler E, Winter S, Schwab M, Gawaz M, Geisler T. Impact of point-of-care testing for CYP2C19 on platelet inhibition in patients with acute coronary syndrome and early dual antiplatelet therapy in the emergency setting. Thromb Res. 2014;134(1):105–10
Shahin M H A, Johnson J A. Clopidogrel and warfarin pharmacogenetic tests: what is the evidence for use in clinical practice?. Curr Opin Cardiol. 2013;28(3):305-14
Pai N P , Vadnais C, Denkinger C, Engel N, Pai M. Point-of-care testing for infectious diseases: Diversity, complexity, and barriers in low- and middle-income countries. PLOS Medicine. 2012;9(9):e1001306.
Rao V B, Schellenberg D, Ghani A C. Overcoming Health Systems Barriers to Successful Malaria Treatment. Trends Parasitol. 2013;29(4):164-80.
Maltha J, Gillet P, Jacobs J. Malaria rapid diagnostic tests in endemic settings. Clin Microbiol Infect. 2013;19(5):399-407.
Steingart K R, Schiller I, Horne D J, Pai M, Boehme C C, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;2014(1):CD009593.
Blacksell S D, Paris D H, Chierakul W, Wuthiekanun V, Teeratakull A, Kantipong P, Day N P J. Prospective evaluation of commercial antibody-based rapid tests in combination with a loop-mediated isothermal amplification PCR assay for detection of Orientia tsutsugamushi during the acute phase of scrub typhus infection. Clin Vaccine Immunol. 2012;19(3):391-5.
Bustin S A, Benes V, Nolan T, Pfaffl M W. Quantitative real-time PCR – a perspective. J Mol Endocrinol. 2005;34(3):597-601.
Huggett J, Dheda K, Bustin S, Zumula A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6(4):279-84.
Wittwer C T, Reed G H, Gundry C N, Vandersteen J G, Pryor R J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003;49(6 Pt 1): 853-60.
Larionov A, Krause A, Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 2005;6:62.
Das S, Hammond-McKibben D, Guralski D, Lobo S, Fiedler PN. Development of a sensitive molecular diagnostic assay for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR. PLoS One. 2020;15:e0235372
Zhang L, Parvin R, Fan Q and Ye F. Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 2022;211:114344
Sedlak RH, Nguyen T, Palileo I, Jerome KR and Kuypers J. Superiority of Digital Reverse Transcription-PCR (RT-PCR) over Real-Time RT-PCR for Quantitation of Highly Divergent Human Rhinoviruses. J Clin Microbiol. 2017;55:442-9
van Snippenberg W, Gleerup D, Rutsaert S, Vandekerckhove L, De Spiegelaere W and Trypsteen W . Triplex digital PCR assays for the quantification of intact proviral HIV-1 DNA. Methods. 2022;201:41-8
Bønløkke S, Stougaard M, Sorensen BS, Booth BB, Høgdall E, Nyvang GB, Lindegaard JC, Blaakær J, Bertelsen J, Fuglsang K, et al. The diagnostic value of circulating Cell-Free HPV DNA in plasma from cervical cancer patients. Cells. 2022;11:2170
Lyu L, Li Z, Pan L, Jia H, Sun Q, Liu Q and Zhang Z. Evaluation of digital PCR assay in detection of M. tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis. 2020;20:657
Salipante S J and Jerome K R. Digital PCR-An emerging technology with broad applications in microbiology. Clin Chem. 2020;66:117-23
Kojabad A A, Farzanehpour M, Galeh H E G, Dorostkar R, Jafarpour A, Bolandian M and Nodooshan M M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol. 2021;93:4182-97
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T . The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22
Kimura Y, Soma T, Kasahara N, Delobel D, Hanami T, Tanaka Y, de Hoon M J L, Hayashizaki Y, Usui K, Harders M. Edesign: Primer and enhanced internal probe design tool for quantitative PCR experiments and genotyping assays. PLoS One. 2016; 11(2):e0146950
Bustin S A, Nolan T . RT-qPCR Testing of SARS-CoV-2: A Primer. Int J Mol Sci. 2020; 21(8):3004
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63
Holland P M, Abramson R D, Watson R, Gelfand D H. Detection of specific polymerase chain reaction product by utilizing the 5’----3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88(16):7276-80
Hanami T, Delobel D, Kanamori H, Tanaka Y, Kimura Y, Nakasone A, Soma T, Hayashizaki Y, Usui K, Herbers M. Eprobes mediated real-time PCR monitoring and melting curve analysis. PLoS One. 2013;8(8):e70942
Tsuchiya K, Tabe Y, Ai T, Ohkawa T, Usui K, Yuri M, Misawa S, Morishita S, Takaku T, Kakimoto A, Yang H, Matsushita H, Hanami T, Yamanaka Y, Okuzawa A, Horii T, Hayshizaki Y, Ohsaka A. Eprobe mediated RT-qPCR for the detection of leukemia-associated fusion genes. PLos One. 2018;13(10):e0202429
Khan M Z H, Hasan M R, Hossain S I, Ahommed M S, Daizy M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens Bioelectron. 2020;166:112431
St John A, Price C P. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014;35:155–67
Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip. 2012;12:2469–86
de Paz H.D. Molecular isothermal techniques for combating infectious diseases: towards low-cost point-of-care diagnostics. Expert Rev Mol Diagn. 2014;14(7):827-43
Kawai Y, Kimura Y, Lezhava A, Kanamori H, Usui K, Hanami T, Soma T, Morlighem J-E, Saga S, Ishizu Y, Aoki S, Endo R, Oguchi-Katayama A, Kogo Y, Mitani Y, et al. One-step detection of the 2009 pandemic influenza A(H1N1) virus by the RT-SmartAmp assay and its clinical validation. PLoS One. 2012;7(1):e30236.
Delobel D, Furutani Y, Nagoshi S, Tsubota A, Miyasaka A, Watashi K, Wakita T, Matsuura T, Usui K. SEB genotyping: SmartAmp-Eprimer binary code genotyping for complex, highly variable targets applied to HBV. BMC Infect Dis. 2022;22(1):516.
Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides, Nucleotides Nucleic Acids, 2008;27(3):224-43.
Abd El Wahed A, Patel P, Faye O, Thaloengsok S, Heidenreich D, Matangkasombut P, Manopwisedjaroen K, Sakuntabhai A, Sall A A, Hufert F T, Weidmann M. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection. PLoS One. 2015;10(6):e0129682
Abd El Wahed A, Patel P, Heidenreich D, Hufert F T, Weidmann M. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. 2013;5. DOI: https://doi.org/10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364
Escadafal C, Faye O, Sall A A, Faye O, Weidmann M, Strohmeier O, von Stetten F, Drexler J, Eberhard M, Niedrig M, Patel P. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis. 2014;8(3):e2730
Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert F T, Weidmann M. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4): 1110–7
Faye O, Faye O, Soropogui B, Patel P, Abd El Wahed A, Loucoubar C, Fall G, Kiory D, Magassouba N, Keita S, Kondé M K, et al. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill. 2015;20(44)
Asdaq S M B, Ikbal A, Sahu R, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al Mohaini M, et al. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials. 2021;11:1841.
Colino C I, Millán C G, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int. J. Mol. Sci. 2018;19:1627.
Luciano K, Wang X, Liu Y, Eyler G, Qin Z, Xia X. Noble Metal Nanoparticles for Point-of-Care Testing: Recent Advancements and Social Impacts. Bioengineering. 2022;9:666
Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293-346.
Han H, Wang C, Yang X, Zheng S, Cheng X, Liu Z, Zhao B, Xiao R. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sens. Actuators B Chem. 2022;351:130897
Whitesides G M. The origins and the future of microfluidics. Nature. 2006;442(7101): 368-73.
Yang S-M, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors. 2022;22:1620.
Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181-9.
Volpatti L R, Yetisen A K. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32(7):347–50
Sharma B, Sharma A. Microfluidics: Recent Advances Toward Lab-on-Chip Applications in Bioanalysis. Adv Eng Mater. 2021;24:2100738
Wang D, He S, Wang X, Yan Y, Liu J, Wu S, Liu S, Lei Y, Chen M, Li L, et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020;4:1150–8
Whitesides G M. The origins and the future of microfluidics. Nature. 2006; 442(7101):368-73
Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412-8
Sia S K, Whitesides G M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis. 2003;24(21):3563-76
Schena M, Shalon D, Davis R W, Brown P O. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science. 1995; 270(5235):467-70
Ivnitski D, O’Neil D J, Gattuso A, Schlicht R, Calidonna M, Fisher R. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. Biotechniques. 2003;35(4);862-9
Gryadunov D, Mikhailovich V, Lapa S. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect. 2005;11:531–9
Crameri A, Marfurt J, Mugittu K. Rapid microarray-based method for monitoring of all currently known single-nucleotide polymorphisms associated with parasite resistance to antimalaria drugs. J Clin Microbiol. 2007;45:3685–91
Jääskeläinen A J, Piiparinen H, Lappalainen M, Vaheri A. Improved multiplex-PCR and microarray for herpesvirus detection from CSF. J Clin Virol. 2008;42:172–5
Duan H, Li X, Mei A, Li P, Liu Y, Li X, Li W, Wang C, Xie S. The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infect Dis. 2021;21:62
Huang J, Jiang E, Yang D, Wei J, Zhao M, Feng J, Cao J. Metagenomic Next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions. Infect Drug Resist. 2020;13:567-76
Dong Y, Gao Y, Chai Y , Shou S. Use of quantitative metagenomics next-generation sequencing to confirm fever of unknown origin and infectious disease. Front Microbio. 2022;13:931058
Gu L, Liu W, Ru M, Lin J, Yu G, Ye J, Zhu ZA, Liu Y, Chen J, Lai G, Wen W . The application of metagenomic next‑generation sequencing in diagnosing Chlamydia psittaci pneumonia: A report of five cases. BMC Pulm Med. 2020;20:65
Jerome H, Taylor C, Sreenu VB, Klymenko T, Filipe A D S, Jackson C, Davis C, Ashraf S, Wilson-Davies E, Jesudason N, et al: Metagenomic next-generation sequencing aids the diagnosis of viral infections in febrile returning travellers. J Infect. 2019;79:383-8
Yu X, Jiang W, Shi Y, Ye H, Lin J. Applications of sequencing technology in clinical microbial infection. J Cell Mol Med. 2019;23:7143-50
Gu W, Miller S, Chiu CY . Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Patho. 2019;14:319-38
Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, et al. Advances in metagenomics and its application in environmental microorganisms. Front Microbiol. 2021;12:766364
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, et al. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. Med Comm. 2022;3:e116
Athanasopoulou K, Boti M A, Adamopoulos P G, Skourou P C, Scorilas A. Third-Generation sequencing: The spearhead towards the radical transformation of modern genomics. Life (Basel). 2021;12:30
Mongan A E, Tuda J S B, Runtuwene L R. Portable sequencer in the fight against infectious disease. J Hum Genet. 2020;65:35-40
Wongsurawat T, Jenjaroenpun P, Taylor M K, Lee J, Tolardo AL, Parvathareddy J, Kandel S, Wadley TD, Kaewnapan B, Athipanyasilp N, et al. Rapid Sequencing of Multiple RNA Viruses in Their Native Form. Front Microbiol. 2019;10:260
Akaçin I, Ersoy S, Doluca O, Güngörmüsler M. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res. 2022;264:127154
Direitos de Autor (c) 2024 Anais do Instituto de Higiene e Medicina Tropical
This work is licensed under a Creative Commons Attribution 4.0 International License.